https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1269
Time limit: 3.000 seconds
#### 问题描述
> Toss is an important part of any event. When everything becomes equal toss is the ultimate decider.
> Normally a fair coin is used for Toss. A coin has two sides head(H) and tail(T). Superstition may work
> in case of choosing head or tail. If anyone becomes winner choosing head he always wants to choose
> head. Nobody believes that his winning chance is 50-50. However in this problem we will deal with a
> fair coin and n times tossing of such a coin. The result of such a tossing can be represented by a string.
> Such as if 3 times tossing is used then there are possible 8 outcomes.
> HHH HHT HTH HTT THH THT TTH TTT
> As the coin is fair we can consider that the probability of each outcome is also equal. For simplicity
> we can consider that if the same thing is repeated 8 times we can expect to get each possible sequence
> once.
> In the above example we see 1 sequence has 3 consecutive H, 3 sequence has 2 consecutive H and 7
> sequence has at least single H. You have to generalize it. Suppose a coin is tossed n times. And the
> same process is repeated 2n times. How many sequence you will get which contains a sequence of H of
> length at least k.
The input will start with two positive integer, n and k (1 ≤ k ≤ n ≤ 100). Input is terminated by
EOF.
For each test case show the result in a line as specified in the problem statement.
4 1
4 2
4 3
4 4
6 2
15
8
3
1
43
给你n个硬币,考虑正反的所有排列数:比如n=2:{HH,HT,TH,TT),然后问至少有k个的硬币连续正面朝上的总数。
至少k个=2^n-最多k-1个。
所以我们可以转换成去求最多k个的问题
dp[k][i][0]表示前i个最多k个连续正面朝上,且第i个反面朝上的总数,
dp[k][i][1]表示前i个最多k个连续正面朝上,且第i个反面朝上的总数,
则我们只需要考虑扣掉最后连续k+1个正面朝上这种情况就可以转移了,写完之后上大整数。
c++(没考虑数据溢出):
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef long long LL;
typedef vector<int> VI;
typedef pair<int,int> PII;
typedef vector<pair<int,int> > VPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
const int maxn=111;
LL dp[maxn][maxn][2];
int n,m;
void pre(){
clr(dp,0);
for(int k=0;k<maxn;k++){
dp[k][0][0]=1;
for(int i=1;i<maxn;i++){
dp[k][i][1]=dp[k][i][0]=dp[k][i-1][0]+dp[k][i-1][1];
if(i>k) dp[k][i][1]-=dp[k][i-k-1][0];
}
}
}
int main() {
pre();
while(scf("%d%d",&n,&m)==2){
LL x=1;
rep(i,0,n) x*=2;
prf("%lld\n",x-dp[m-1][n][0]-dp[m-1][n][1]);
}
return 0;
}
//end-----------------------------------------------------------------------
java:
import java.util.*;
import java.math.*;
public class Main {
final static int maxn = 111;
public static void main(String args[]) {
Scanner cin = new Scanner(System.in);
BigInteger[][][] dp = new BigInteger[maxn][maxn][2];
for (int i = 0; i < maxn; i++) {
for (int j = 0; j < maxn; j++) {
dp[i][j][1]=dp[i][j][0] = BigInteger.ZERO;
}
}
for (int k = 0; k < maxn; k++) {
dp[k][0][0] = BigInteger.ONE;
for (int i = 1; i < maxn; i++) {
dp[k][i][1]=dp[k][i][0] = dp[k][i - 1][0].add(dp[k][i - 1][1]);
if (i > k)
dp[k][i][1] = dp[k][i][1].subtract(dp[k][i - k - 1][0]);
}
}
BigInteger[] x = new BigInteger[maxn];
x[0] = BigInteger.ONE;
for (int i = 1; i < maxn; i++)
x[i] = x[i - 1].add(x[i - 1]);
while (cin.hasNext()) {
int n, m;
n = cin.nextInt();
m = cin.nextInt();
BigInteger ans = x[n].subtract(dp[m - 1][n][0]).subtract(dp[m - 1][n][1]);
System.out.println(ans.toString());
}
}
}
手机扫一扫
移动阅读更方便
你可能感兴趣的文章