Go 在通道这一块,没有内置函数判断通道是否已经关闭,也没有可以直接获取当前通道数量的方法。所以对于通道,Go 显示的不是那么优雅。另外,如果对通道进行了错误的使用,将会直接引发系统 panic,这是一件很危险的事情。
虽然没有判断通道是否关闭的内置函数,但是官方为我们提供了一种语法来判断通道是否关闭:
v, ok := <-ch
// 如果ok为true则代表通道已经关闭
利用这个语法,我们可以编写这样的代码判断通道是否关闭:
func TestChanClosed(t *testing.T) {
var ch = make(chan int)
// send
go func() {
for {
ch <- 1
}
}()
// receive
go func() {
for {
if v, ok := <-ch; ok {
t.Log(v)
} else {
t.Log("通道关闭")
return
}
}
}()
time.Sleep(1 * time.Second)
}
也可以用 for range
简化语法,通道关闭后会主动退出 for 循环:
func TestChanClosed(t *testing.T) {
var ch = make(chan int)
// send
go func() {
for {
ch <- 1
}
}()
// receive
go func() {
for v := range ch {
t.Log(v)
}
t.Log("通道关闭")
return
}()
time.Sleep(1 * time.Second)
}
有三种情况会引发 panic:
// 会引发channel panic的情况一:发送数据到已经关闭的channel
// panic: send on closed channel
func TestChannelPanic1(t *testing.T) {
var ch = make(chan int)
close(ch)
time.Sleep(10 * time.Millisecond)
go func() {
ch <- 1
}()
t.Log(<-ch)
}
// 会引发channel panic的情况一的另外一种:发送数据时关闭channel
// panic: send on closed channel
func TestChannelPanic11(t *testing.T) {
var ch = make(chan int)
go func() {
go func() {
// 没有接收数据的地方,此处会一直阻塞
ch <- 1
}()
}()
time.Sleep(20 * time.Millisecond)
close(ch)
}
// 会引发channel panic的情况二:重复关闭channel
// panic: close of closed channel
func TestChannelPanic2(t *testing.T) {
var ch = make(chan int)
close(ch)
close(ch)
}
// 会引发channel panic的情况三:未初始化关闭
// panic: close of nil channel
func TestChannelPanic3(t *testing.T) {
var ch chan int
close(ch)
}
我们在实际的业务中应该避免这三种不同的 panic,未初始化就关闭的情况较为少见,也不容易犯错误,重要的是要防止关闭后发送数据和重复关闭通道。
在 go 中有一条原则:Channel Closing Principle,它是指不要从接收端关闭 channel,也不要关闭有多个并发发送者的 channel。只要我们严格遵守这个原则,就可以有效的避免panic。其实这个原则就是让我们规避关闭后发送
和重复关闭
这两种情况。
为了应对关闭后发送数据这种情况,我们很容易想到Channel Closing Principle的第一句:不要从接收端关闭 channel。所以我们应该从发送端关闭 channel:
func TestSendClose(t *testing.T) {
var (
ch = make(chan int)
wg = sync.WaitGroup{}
// 10毫秒后通知发送端停止发送数据
after = time.After(10 * time.Millisecond)
)
wg.Add(2)
// send
go func() {
for {
select {
case <-after:
close(ch)
wg.Done()
return
default:
ch <- 1
}
}
}()
// receive
go func() {
defer wg.Done()
for v := range ch {
t.Log(v)
}
return
}()
wg.Wait()
}
这种方式可以应对单发送者的情况,如果我们的程序有多个发送者,那么就要考虑Channel Closing Principle的第二句话:不要关闭有多个并发发送者的 channel。那么这种情况下,我们应该如何正确的回收通道呢?这个时候我们可以考虑引入一个额外的通道,当接收端不想再接收数据时,就发送数据到这个额外的通道中,来通知所有的发送端退出:
func TestManySendAndOneReceive(t *testing.T) {
var (
sender = 3
wg = sync.WaitGroup{}
numCh = make(chan int)
stopCh = make(chan struct{})
// 10毫秒后通知发送端停止发送数据
after = time.After(10 * time.Millisecond)
)
wg.Add(1)
// send
for i := 0; i < sender; i++ {
go func() {
for {
select {
case <-stopCh:
fmt.Println("收到退出信号")
return
case numCh <- 1:
//fmt.Println("发送成功", value)
}
}
}()
}
// receive
go func() {
for {
select {
case v := <-numCh:
fmt.Println("接收到数据", v)
case <-after:
close(stopCh)
wg.Done()
return
}
}
}()
wg.Wait()
}
看完这段代码,我们发现 numCh
这个通道是没有关闭语句的,那么这段代码会引发内存泄漏吗?答案是不会,因为我们正确退出了发送端和接收端的所有协程,等到这个通道没有任何代码使用后,Go 的垃圾回收会回收此通道。
那如果此时我们的程序变得更为复杂:有多个接收者和多个发送者,这个时候怎么办呢?我们可以引入另外一个中间者,当任意协程想关闭的时候,都通知这个中间者,所有协程也同时监听这个中间者,收到中间者的退出信号时,退出当前协程:
func TestManySendAndManyReceive(t *testing.T) {
var (
maxRandomNumber = 5000
receiver = 10
sender = 10
wg = sync.WaitGroup{}
numCh = make(chan int)
stopCh = make(chan struct{})
toStop = make(chan string, 1)
stoppedBy string
)
wg.Add(receiver)
// moderator
go func() {
stoppedBy = <-toStop
close(stopCh)
}()
// senders
for i := 0; i < sender; i++ {
go func(id string) {
for {
value := rand.Intn(maxRandomNumber)
if value == 0 {
select {
case toStop <- "sender#" + id:
default:
}
return
}
// 提前关闭goroutine
select {
case <-stopCh:
return
default:
}
select {
case <-stopCh:
return
case numCh <- value:
}
}
}(strconv.Itoa(i))
}
// receivers
for i := 0; i < receiver; i++ {
go func(id string) {
defer wg.Done()
for {
// 提前关闭goroutine
select {
case <-stopCh:
return
default:
}
select {
case <-stopCh:
return
case value := <-numCh:
if value == maxRandomNumber-1 {
select {
case toStop <- "receiver#" + id:
default:
}
return
}
t.Log(value)
}
}
}(strconv.Itoa(i))
}
wg.Wait()
t.Log("stopped by", stoppedBy)
}
可以使用 sync.once 语法来避免重复关闭通道:
type MyChannel struct {
C chan interface{}
once sync.Once
}
func NewMyChannel() *MyChannel {
return &MyChannel{C: make(chan interface{})}
}
func (mc *MyChannel) SafeClose() {
mc.once.Do(func(){
close(mc.C)
})
}
也可以使用 sync.Mutex 语法避免重复关闭通道:
type MyChannel struct {
C chan interface{}
closed bool
mutex sync.Mutex
}
func NewMyChannel() *MyChannel {
return &MyChannel{C: make(chan interface{})}
}
func (mc *MyChannel) SafeClose() {
mc.mutex.Lock()
if !mc.closed {
close(mc.C)
mc.closed = true
}
mc.mutex.Unlock()
}
func (mc *MyChannel) IsClosed() bool {
mc.mutex.Lock()
defer mc.mutex.Unlock()
return mc.closed
}
如何正确关闭 gotoutine 和 channel 防止内存泄漏是一个重要的课题,如果在编码过程中,遇到了需要打破Channel Closing Principle原则的情况,一定要思考自己的代码设计是否合理。
手机扫一扫
移动阅读更方便
你可能感兴趣的文章